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Abstract. In this paper a local error analysis is given of the approximation of the integrals used in boundary 
integral equation methods for solving Laplace's equation. Using Taylor series expansions approximate expressions 
are derived for the velocity and velocity-potential integrals. The asymptotic behaviour of the local truncation error 
is given in terms of the panel grid size. 

1. Introduction 

To describe the irrotational flow of  an inviscid, incompressible fluid a velocity potential q~ 
is introduced where the fluid velocity v is given by v = V4~. The potential q~ then satisfies 
Laplace's equation throughout the fluid domain ~: 

VZq~(x) = O, x ~ f~, (1.1) 

and is subject to boundary conditions 

] = 0, x E  (1.1a) 
\ 

f x , t ,c~,On . . . .  S. 
/ 

Panel methods (or: boundary element methods, boundary integral equation methods) have 
been used for solving potential flow problems since the early sixties (see e.g., [1]). In these 
methods the boundary value problem (1. I) - (1.1 a) is solved by means of integral equations, 
based on Green's third identity, where the integration is over the boundary S of the fluid 
domain f~. 

In this paper we will consider integral equations expressing the velocity and the velocity 
potential in a point x in terms of a source distribution a and a dipole distribution p on the 
boundary S: 

(~ , , ~(x) = f f  - - + dS, x ~ s ,  (1.2) 
O ~  s r 

(1.3) 

where Vx denotes the gradient operator (O/cgx, O/Oy, O/Oz) r. The major advantage of panel 
methods is that the computational domain (here the boundary S) has a dimension which 
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is one lower than that of  the computational domain of field discretization methods which 
involve the discretization of the entire domain I). Due to this attractive feature, panel 
methods have become more widespread in the last 15-20 years, and now numerous versions 
have been developed, both in 2 and 3 dimensions (see e.g., [2]). Most common are the 
lower-order methods, where the boundary S of the fluid domain is approximated by flat 
panels or elements. On each element the singularity distributions (source and/or dipole) are 
taken to be constant. More recently also higher-order methods have been developed to 
circumvent some of the disadvantages of  the lower-order methods, such as low accuracy and 
singular behavior at panel edges. These methods take curvature effects into account and use 
piecewise linear or quadratic singularity distributions [6]. 

The accuracy of the approximation of  the boundary integrals determines the discretization 
error. Therefore it is important to have an a priori estimate of the order of  the global error 
when using a given approximation of the geometry and the singularity distributions. How- 
ever, the mathematics involved in deducing such global error estimates is very complicated, 
and general results on the accuracy and asymptotic convergence of  panel methods are not 
yet available, this in spite of important progress made by, for instance, Wendland [3] and 
Schippers [4]. A very different approach was given by Hess in a series of papers (see e.g., [5]) 
in which he used a small-curvature expansion to obtain locally consistent approximations of  
velocity integrals. 

Here we will pursue the local error analysis method of Hess further to derive consistent 
approximations for both velocity and velocity-potential integrals in three dimensions. 
Giving estimates of the asymptotic behavior of the leading terms in the expansions it is 
indicated which contributions should be taken into account to obtain local truncation errors 
of  various orders in terms of  the characteristic panel grid size A. In this analysis we will give 
approximations with truncation errors up to O(A 3) for the velocity potential, and up to 
O(A 2) for the velocity. One should bear in mind that in most applications only the velocity 
(and the pressure) is of  interest, and not the potential. Therefore, when using the potential 
equation (1.2), the potential will be differentiated to obtain the velocity. This means that in 
order to have an O(A")-truncation error for the velocity, the potential has to be approxi- 
mated up to O(A"+~). All the integrals in the expansions can be calculated analytically 
without the use of numerical quadrature. This is an important advantage since due to the 
singular kernels of  the integrals numerical quadrature can give bad results in the near field 
(when the field point x is near the panel). Since most of  the computing time in panel methods 
is spent on the calculation of these integrals it is important to minimize the amount of work 
to get the desired accuracy. Therefore we will also consider the truncation errors of the 
multipole expansions used for far-field approximations. 

2. Surface geometry and discretization 

Consider a C2-continuous surface S described by the following parametrization: 

x = x(u, v) (2.1) 

where (u, v) �9 [0, Umax] X [0, Vmax]. The surface is discretized in panels by discretizing the 
parameter domain into rectangular panels bounded by lines of constant u and v. On each 
panel (u, v) e [ui, ui+ ~] x [vj, vj +~] an expansion point (u0, v0) is chosen such that the point 
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-no 

Fig. 1. S u r f a c e  a p p r o x i m a t i o n .  

x0(u0, v0) in physical space is near the centre of  the panel (Fig. 1). Now, the integrals over 
S are expressed as the sum of  the integrals over all N panel surfaces ASI, so that we can 
replace (1.2) and (1.3) by the expressions: 

q~(x) = - o - - +  ~ - -  dS, x ~ S ,  (2.2) 
i ~ l  . r 

Unfortunately the integrals over the panel surfaces can not be calculated exactly. Obviously 
some approximation has to be made to the singularity distributions a and # over a panel, 
but also an approximation has to be made of  the panel surface AS. Here we want to 
investigate the contribution of  one panel AS in (2.2) and (2.3) to the truncation error 
involved using these approximations. 

To facilitate the calculations we introduce a local orthonormal panel coordinate system 
on AS with origin at xo(u0, v0) and unit vectors el, e2 and e3, where e 3 = n (the local normal 
vector at x0) and el and ez are tangent to the surface at x0 (Fig. 2). Expressed in these local 
panel coordinates we will thus consider the following integrals: 

q~,(x) = -- [ ~ a  1 dS, (2.4) 
r AS 

~ I  n ~ r 
~bd(X ) = -- ~ ---fl--- dS, (2.6) 

AS 
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Fig. 2. Loca l  p a n e l  c o o r d i n a t e  sys tem.  

The integration variable will be denoted by ~ = (r ~/, () (on AS), so that tr = tr(r 
/~ = g(r and n = n(r the normal  at ~. The distance r = I rl = Ix - ~l is the distance 
between the field point  x and ~ on AS. 

3. Geometric expansions; assumptions 

To evaluate equations (2.4)-(2.7) the integrals are approximated using Taylor  series expan- 
sions for tr,/~ and the panel surface. It is assumed that the panel surface can be expressed 
a s  

= ~(~, ~/). (3.1) 

Now, using the origin x0 of  the panel coordinate  system as expansion point, o(~) and/z(~) 
can be expanded as follows: 

0(~)  = tro q- (trx~ "~" tryn) --I- (10xxr  2 q- Oxy~l 7 Jr- 10,1'12 ) -Jr- �9 �9 �9 

= t ro+  a, + tr2 + O(A3), (3.2) 

~ ( r  = ~o + ( ~  + ~y,7) + (�89162 ~ + ~x~r + �89 ~) + . . .  

= /z0 + #1 + /z2 + O(A3), (3.3) 

where A is the characteristic panel size (A ,~ 1). Here it is assumed that 00, o~, try . . . . .  ~ ,  
/Zx,/~y,/~ . . . . . .  are of  O(1), so that  tr0 and ~ are O(1), 01 and/~1 are O(A), and more general 
an and/~,  are O(A"). 

The panel surface can be expressed as (Fig. 2) 

( ( ~ ,  Y/) = (Cxxr 2 + Cxy~l" ] q- r 2) -'l- ( T 3 0 ~  3 "+- T 2 1 ~ 2 n  "[- TI2~Y/2 + To3r/3)  -q- �9 �9 �9 

= ~2 + ~3 + O(A4), (3.4) 
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o r  

F(~,~ ,~)  = ~ -- ~ : - -  ~3 . . . . .  0. (3.5) 

Then the unit normal n is panel coordinates on AS is 

VF 
n - ( 3 . 6 )  

IVFI' 

It is assumed that the curvature and twist coefficients c=, cxy . . . .  are at most O(1). 
Now the integration will be over the area AA, which is the projection of  AS along e3 on 

the ~r/-plane. (Notice that in general the boundaries of  AA are curved). Clearly, the panel 
area AS is O(N).  

Using the panel surface expansion (3.4) we can expand all ~-dependent quantities in the 
integrals (2.4)-(2.7). In the first place dS can be written as 

1 
dS dA = [1 + I 2 (3.7) 

n �9 e 3 

Secondly, we write (Fig. 2): 

r = r f  - ~e  3, rf = Irzl (Euclidean norm) (3.8) 

where in the near field r / =  O(A), and in the far field r: = O(1). Furthermore, 

r = O(ry), x - ~  = O(rz), y - ~ l  = O(rr ~ = O(A2), ~,r/ = O(A). 

The order of  magnitude o f z  is more subtle. In general z = O(rz). However, i fx  = (x, y, z) r 
is on the same C 2-continuous surface S as the panel is, and x is in the near field, then z can 
be expressed as 

z = cx~x 2 + CxyXy + cyyy 2 + O(r:) 3, (3.10) 

showing z to be 0 ( 3 )  = O ( A  2)  in this case. Thus, when the entire boundary S is C 2- 
continuous, z will always be O(A 2) in the near field. But since in general the boundary S will 
not be smooth but will contain corners and edges, we will assume z to be only O(rf) = O(A) 
in the near field. 

Using (3.8) and the assumptions mentioned above we will use the following expansion of 
I/r* for the near field: 

7 = + 2 + 

1 
= -r [1 + C~, + Ck2 + O(a~)], (3.1D 

ry 
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where 

J . E .  R o m a t e  ~ " 

(zA2  = 

Ckl = O ~k ~ff J 

ck2 = = 

Although this expansion is valid for both near field and far field we will not use (3.11) in the 
far field, but use (Fig. 2) 

1 1 
= ~ (1 + O(A)) (3.12) 

r6 

instead. Here r 0 is the distance between the field point and the panel centre. This leads to the 
often used multipole expansions, where integrals Mkt are involved defined by 

Mk, = H r de dr/ (3.13) 
AS 

with Mco=  O(A2), and Mlo and M01 of O(A4). 
In the next sections we will derive small-curvature expansions for (2.4)-(2.7) for the near 

field, and present multipole approximations for the far field. 

4. Potential due to a source distribution 

N e a r  f i e l d  rf = O(A) 

The potential ~, in x due to a source distribution a(~) on a panel AS is given by 

1 dS. 
7 AS 

Expanding the integral gives 

- 1  [(1 + Cll + C12 + . . . ) ( a 0  + cr~ + a2 + . - - )  
rl 

( 1 + 1  (~2r + ~ , )  + - . - ) ] d A  = I, + (I2 + /3) + O(A3) �9 

The orders of magnitude of  the 3 lowest-order terms are 

(1) 
(1) 

(4.1) 

(4.2) 

(4.3) 
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13 = - ! ! ~ a o C .  dA, = O lzA:  ~ a  2 = O(A2). 

Thus we see that to obtain a local truncation error of  O(A 2) only 11 has to be calculated./1 
represents the potential (k,(x) due to a constant source distribution over a fiat panel. To 
obtain a cubic truncation error in A, a linear source distribution is needed (al in I:) and also 
the curvature of  the panel has to be taken into account (Cn in 13). A higher-order truncation 
error than O(A 3) would involve at least a quadratic source distribution and a cubic surface 
representation. In this analysis, however, we will only consider truncation errors up to O(A 3) 
for the velocity potential. 

Farfield." ry = O(1) 

Expanding (4.1), now using (3.12), gives 

~b~(x) = [ [ - a ~  dA + O(A 4) - - a 0  Moo + O(A4). (4.4) 
ro ro 

5. Velocity  due to a source distribution 

Nearfield: r I = O(A) 

The velocity Vs in x due to a surface source distribution a(O on a panel AS is given by 

H (!) F 
vs(x) = - a(r  Vx d S  = a(r  7 d S  (5.1) 

AS AS 

! ! ~ ( 1  + C31 + C32+ . ) ( a 0 + a l  + ) 

(1 + O ( A 2 ) ) ( r f -  ~e3) dA = Ji + (J2 + J3 + J4) + O(A2) �9 

The lowest-order contributions have the following order of  magnitude: 

- -  - -  o ( , ) ,  

As ~ 

L~ 
= fIAs ,r, dA = o(A),  

.I 4 = ! !  10"0 C31Ff d a  = O(m). 

(5.2) 
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Comparison with (4.3) shows that when the same approximation of source distribution 
and panel geometry is used, the truncation error of  the velocity approximation is O(1/A) 
times the truncation error of  the potential approximation, due to the application of 
the gradient operator. Thus we see that for a given source and panel-surface approxi- 
mation the same order of truncation error is obtained for the velocity, whether one 
uses (5.1) directly, or uses (4.1) instead and calculates the velocity from ~b, using numerical 
differentiation. 

Far field: rf = 0(1) 

In this case expanding (5.1) gives 

As ~oXdA + . . .  

O" 0 
= --T M0ox + O ( a ' ) .  

r0 
(5.3) 

6. Velocity due to a dipole distribution 

Nearfield: r / =  O(A) 

The velocity due to a surface dipole distribution is given by 

v. x, _- 

r r x d l  
= f I  ~' • ; d S - ~ c  " r ~ = v~ + v ~ ,  (6.1) 

AS 

where 7 = V# x n, n = (nl, n2, n3) r. That is, the velocity is expressed in terms of  a surface 
vortex distribution 7 and a line vortex p along the perimeter C = Y~ C~ of AS (the perimeter- 
parts C~ are assumed to be C 2-continuous). 

Now 

3 , =  V # •  

(.1) 
72 

73 

n3 

0# 
- -  ~ n  3 

O# 0/~ -~n2---~nl 

(6.2) 
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I"11 ~, JJ" 

p 

~ / /  ,' 

common edge C 

Fig. 3. Two adjacent panels. 

and % can be written as 

v~ = v~ = (u~(cr ~3) - ws(cr y~) �9 (6.3) 

The velocity components of  a surface vortex distribution can thus be written in terms of  the 
velocity: due to a surface source distribution. To obtain the same order of  truncation error 
as with a source distribution, ~, = V# x n has to be of  the same order of  accuracy as tr, and 
therefore/~ itself has to be one order higher. 

The line integral in (6.1) stems from the discontinuity of  the dipole strength at panel edges. 
In the interior of  the surface S the two line-vortex contributions of  the common edge of  two 
adjacent panels represent a single line-vortex contribution with line-vortex strength A/~, 
i.e. the jump in # across the common edge (Fig. 3). The contribution from this line vortex 
is spurious since analytically the dipole # does not jump across the edge: the line-vortex 
contributions cancel each other exactly. Therefore this line-vortex contribution is entirely 
due to the discretization of  # and is of  the order of  the truncation error of  % (as will be 
shown), and therefore should be neglected in the interior of  S. If  it is known in advance that 
the boundary S of  the computational domain fl is closed and g is continuous in all r on S, 
then the line-vortex integral can be omitted entirely from equation (6.1). 

The line vortex has to be taken into account whenever the term is not caused by the 
discretization, that is, at the boundary of  a nonclosed surface S, and along curves in the 
interior of  S where # is discontinuous. Then the line-vortex contribution is: 

r x d l  r x d l  
(6.4) 

where the line integral is taken along a C~ curve C = Yi Ci. The position of  a 
curve Ct is expressed in terms of  a local coordinate system with origin at M on C,. and with 
unit direction vectors t, n x t and n (Appendix I, Fig. 1.2) where t is tangent to Ci at M and 
n is the normal at M of the surface AS. 
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Now ~ on Ci is given by (Appendix I, equation (1.6)) 

r = e t  + �89162 x t) + �89162 + ~.gdj3(n x t) + ;t.r + . . .  

where x~, x . . . . .  are assumed to be o f  O(1) at most. 
In terms of  the local coordinate  system 

t t 
e 2 = n x t, e 3 = n, el = t, 

we have 

dl = de, 

and 

r = x - -  r = r} + �89162 + x.e~) + r + 2.e~) + O(A 4) 

= r) + r,2 + re3 + O ( A 4 ) .  

where r) is the distance f rom the field point x to the tangent line, 

r) = x --  ee l .  

Expanding 1/r 3 as follows: 

1 
(1 + C1 + (?2 + O(A3)), 

1 

P 

and 

#(r = 

we have 

#o + #l + #2 + O(A3), 

r x dl 
fc, - # r 3 

1 (1 + C, + C 2 + O(A3))  

X [( t )  -Jr- rc2 + rc3 + O(A4) )  X d~] .  

The leading terms in the expansion are 

L, = f q _  r; x de 
r /  

1 
L2 = ~ - p .o~C,r )  x de 

: 

= 0 ( 1 ) ,  

1 
L 3 = fc - - ~ r - ~ r c 2  x d~ -- o(1), 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 
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L4 = ~r -- /t, r}--3r} x d~ 
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= 0 (1 ) ,  

1 C2r) x d{  = o ( a ) ,  L~ --- ~c - ~o ~ 

1 
L6 = ~,.I- -- ~-7iC1rc2 x de = O(A), 

r~ 

1 
L7 -~- acf-i- #0-')X re3 X de = O(A), 

r /  

I C,r/ x d~ = O(A), Ls = ~ - - # , r -  ~ 

1 
L9 = [_ -- Pl"~r~2 x de = O(A), #ci r /  

133 

Y c -  # t r  • d l  r x d l  r x dl  
fc _ #2 ~ (6.14) r3 = ~-A/~ r3 

with/~i the dipole strength of panel i along C. The minus sign in front the second integral 
in (6.14) is due to the fact that C is traversed in opposite direction. 

A polynomial approximation of  # of  order p gives for ~ on C: 

#1(~)  = JMexact(~) "JI- O(AP+l) ,  

~ ( r  = ~o~,~(r + o(~r  

and 

(au)0(O = o ( ~ ' + ' ) ,  

(au) , ( r  = o ( a . ) ,  

(au)2(r = o ( t e - ' ) .  

(6.15) 

The other terms are at least O(A2). To achieve a second-order truncation error all integrals 
L I - Lt0 should be taken into account. 

To show that the line integral can be neglected in the interior of  S we will consider two 
adjacent panels, 1 and 2, with common edge C (Fig. 3). The total line-integral contribution 
of  C is: 

1 
L'~ = St, - P.2 -~ r/ x d~ = O(A). (6.13) 

, f  
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Substituting Ap for/~ in (6.13) then shows that the line-vortex contribution is O(A"). Since 
the approximation of the velocity due to the surface-vortex distribution involves the same 
truncation error, that is O(A O, it is clear that the contribution (6.14) can be neglected. 

Far field." rf = O(1) 

Expansion of  the surface vorticity integral gives 

f f  r vd(x ) = v~(x) = ~ x ~ d S  
AS 

e 2 x x e 1 x x 
= - # x  ~ Moo + /~y ~ Moo + O(A4). (6.16) 

7. Potential due to a dipole distribution 

Near field: rf = O ( A )  

The potential due to a dipole distribution on a panel As is given by 

!!/~ (n-  r) dS, (7.1) ~,(x) = - 

and is expanded as follows: 

f f  # (VF. r) dA 

= - ! !  ~5 (1 + c3, + c32 + . . .  ) ~  + u, + ~ + . . .  ) ( -~r  - 0 

- - ( . ( y  -- r/) + (z -- 0 ) d A  

= Kj + (/(2 + K3 + K4) + (Ks + " ' "  + K~o) + O(A3). (7.2) 

The leading terms in the expansion are 

!!l 
K, = -- ~ p.ozdA = ~fzA 2 

1 
K2 = - - f f~(- -~2r  -- ~) -- ~ ( Y  -- ") -- ~2)dA = O(A), 

) 

0(1), 
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o( Z \ as/ O(A), 
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K5 = - f f  ~ - ~) - ~3,(Y - ~1) - (3)dX = O(A2), 

1 
K 6  = - -  I I ' ~  ] ~ 0 C 3 1 ( - - ~ 2 ~ (  x - -  4 )  - -  (~(Y -- t/) -- ~2)dA = O(A2), 

~ ' f  

zA ) = 
K7 = - - ~  = lk ~ T '  ~ ,] 

1 
/(8 = -- f l ~ # , ( - ~ 2 r  - 4) - ~2,(y - q) - (2)dA = O(N), 

h~rf 

1 o ( N Z 2  A2 ) = O(A2), K 9 = - i !pZ l~ ,C , , zdA  = ~, 

1 O {'A2z ) 
(7.3) 

The other terms are least third order in A. 
It is clear that the computation of the velocity potential due to a dipole distribution 

involves much more work than that due to a source distribution to obtain the same level of  
accuracy. E.g. a constant source and flat panel representation gives an O(A 2) truncation 
error, whereas a linear dipole and a quadratic panel is needed to obtain the same order of  
truncation error (integrals I~ and Kt- /q  have to be calculated respectively). 

It is well known, however, that for smooth boundaries a piecewise constant dipole 
distribution on a flat panel will given an O(N) truncation error, and not an O(A) error as 
is suggested by the analysis of  the integrals. 

To explain this we take a closer look at the expansion (7.2). The integrals K,, K4, Kt0 are 
the leading terms of the expansion of the integral 

Kl = - - f f  l p z d A .  (7.4) 
as 

For  smooth boundaries z = O(N)  and all terms are one order higher than given in (7.3) 
which is the general ease where z is assumed to be O(A). Therefore Ki is O(A), K4 is O(A2), 
and K~0 is O(N). The integrals/(2,/(3, K 5 are the leading terms of the expansion oftbe integral 

l ( 3 z  2 ) 1 

which can be written as 

(7.5) 

K2 = -- ~ ~c ~ [( y -- r/) d4 - (x - 4) dr/]. (7.6) 
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If  the geometry is smooth and (ex=ct is approximated by ( = (exact + O(AO, then the trunc- 
ation error of  the approximation of (7.5) is of  O(AP-~). However, if we consider two adjacent 
panels and use an argument similar to that applied in Section 6 to the line-vortex contribution, 
P0 in the integral (7.6) can be replaced by the jump Ap in Po which is of  O(A) i f#  is assumed 
to be continuous. Thus the truncation error of  the combined contribution/~2 of two adjacent 
panels is of  O(AO. This means that all terms in the expansion of  K2 are one order higher if 
combined with the similar terms of  K" 2 of  the adjacent panels. So that in obtaining a 
second-order truncation error K2 and K3 can be neglected. 

Far field: rf = O(1) 

In this case expanding (7.1) gives 

~bd(x) = - ~f ~ zdA + O(A 4) 
AS 

]/0z Moo + o(Aa). (7.7) 
r0 

8. Truncation errors due to panel boundary approximation 

The area of  integration AAi of  a panel ASi is obtained by projecting the curved surface AS~ 
along the local normal n,. onto the ~,r/-plan e. The boundaries of AA,. are projections of parts 
of  the space curves x(u, v) with u = ut, u -- u~+l, v = vj and v = vj+l, and therefore they 
are curved in general. Usually these four boundaries are approximated by straight line 
segments forming a quadrilateral panel as shown in Fig. 4. This approximation introduces 
an additional truncation error. 

To investigate the order of magnitude of  this error two adjacent panels are considered (see 
Fig. 5). The common edge of the panels ASi_ ~ and ASi is the curve x(u,  v) with v ~ [vj, vj+ t ]. 
For panel AS~_I this curve is projected along n~_~, whereas it is projected along ni for panel 

vj 
Ui 

[,x 
Ui*l 

Fig. 4. Curved boundaries of AA. 
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\/j, ui-1 UN~i*l " 

Fig. 5. Gaps between adjacent panels due to projection along normals. 

ASi to form the boundaries of  the respective integration areas AAi_ ~ and AAi. If  the exact 
integration areas are used (i.e., with the curved boundary in the plane ( = 0) the panels abut 
to the order of accuracy indicated by the analysis in the previous sections. But using the 
straight line approximations the panels do not abut whatever normal curvature terms are 
included. The projections of the straight line areas along there respective normals onto the 
surface will leave a gap on the surface between the panels. 

To deduce the order of magnitude of the error caused by the straight-line approximation 
of  the panel boundaries, we decompose the surface curvature into normal curvature and 
geodesic ("internal") curvature (Appendix I). When we have a flat surface and curved lines 
of constant u and v within the surface, we have only geodesic curvature. Since the lines 
u = ui, etc. are curved, the straight line approximation introduces an error in the panel 
surface approximation. In general the gap due to geodesic curvature has width O(A2), and 
area O(A3), (see equation (I.15). Appendix I). The error due to the geodesic curvature is 
cancelled when the gap is between two panels; e.g., a flat disk can be approximated exactly 
by flat panels with straight line segments, except for the error at the edge of  the disk. There- 
fore geodesic curvature only has to be taken into account at surface edges. But we also have 
a contribution due to the normal curvature, present when the surface itself is curved. Clearly 
this curvature also induces curved boundaries of the area of  integration AA~. The gap due 
to normal curvature has width O(A3), and area O(A4), (see 0.15), Appendix I). 

The lowest-order terms in the potential and velocity-potential expansions are O(1/A:) 
times area of integration. Thus, when using straight boundaries the truncation error will be 
O(A-2 A 3) = O(A) due to geodesic curvature, and O(A -2 A 4) = O(A 2) due to normal curva- 
ture. Therefore corrections are needed for the lower-order terms to achieve higher-order 
truncation errors. 

9. Conclusions 

We will now summarize the results obtained in the previous sections. Using Taylor series 
expansions for the source distribution tr, the dipole distribution/~ and the panel surface (, 
the surface integrals of  the boundary integral equations (1.2) and (1.3) were expanded in 
series of  integrals which can be calculated analytically. Estimates of the local truncation 
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Table 1. Summary of results on local errors 

Local trunc, a /~ Panel geometry 
error e a 

int. eq. 
~b(x) O(A 2) const, lin. quadr. 
S non-smooth O(A3) * lin. quadr, cubic 

int. eq. 
~b(x) O(A 2) const, lin. flat 
S smooth O(A 3)* lin. quadr, quadr. 

int. eq. 
v(x) O(A) const, lin. fiat 
S smooth or non-smooth O(A2) * lin. quadr, quadr. 

* To obtain this local truncation error the panel boundaries have to be approximated using higher-order 
representations for the lowest-order terms in the expansions (Section 8). 

errors were derived by estimating the order of  magnitude of  the integrals in terms of  the 
characteristic panel size A. The velocity is the physical quantity of interest in most applications, 
and it can be obtained either by using (1.3), giving v(x) directly, or by using (1.2), giving the 
potential ~b(x), from which v(x) can be calculated using numerical differentiation. Therefore 
~b(x) should be approximated one order higher than v(x). 

Table 1 summarizes the main results of  the estimates. It shows the minimum approxi- 
mations needed for the source a, the dipole # and the panel geometry to obtain a given order 
for the local truncation error cA. It is assumed that the boundary S is closed and that # is 
continuous in every ~ on S. Only the two lower-order consistent approximations are shown 
for both the potential equation (1.2) and the velocity equation (1.3). Notice that in all cases 
the dipole/~ should be approximated one order higher than the source a. 

In general it can be concluded from this analysis that the use of  equation (1.2) will require 
more effort to obtain a given accuracy in the velocity v(x). However, one should keep in mind 
that this is a local error analysis, and not a global error analysis. In future we hope to get 
some answers on the relation between local and global errors to be able to predict the 
asymptotic behaviour of  the errors in the solutions obtained using these panel methods, to 
solve Laplace's equation. 
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Appendix I. Curves on surfaces in space 

Let r = r(u) define a C 2-continuous curve C on a C2-continuous surface S (u is the arc length 
measured from some fixed point on the curve C). Then the unit tangent to, the unit normal 
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u=O --U 

0 

Fig. LI. Definition of  L, nc and be. 

n, and the unit  binormal b, in r(u*) = M on C are 

d r  
t, = d u '  (1.1) 

dt~ / dL  1 dL (I.2) 
nc = d u / I  du = , x  d u '  

bc = L • n~. (1.3) 

The vector nc is or thogonal  to tc and lies in the osculating plane at r pointing in the direction 
of  concavity of  the curve (Fig. I. 1): the quanti ty x is called the curvature o f  the curve C at 
r(u*), sometimes referred to as 1/0. Generally nc is not  normal  to the surface S at M, but nc 
can be decomposed in terms of  the normal  n of  S in M and n x t (Fig. 1.2), with t = L: 

xn xg n c = - - n  + - - n  x t. 
K K 

(I.4) 

Fig. L2. Curve C on S. 
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The coefficient x~ is the normal  curvature o f  S in M and rg the geodesic (internal) curvature 
o f  S. x, rn and rg are related by 

2 ~ .  0.5) x 2 = x n +  

Introduce the local coordinate system (t ,  n x t, n )  with origin in r = M on C. Locally C 
may  be written as (~ on C) 

= ~t + r/(n x t) + ~n 

= r + ( �89 2 + ~g~3 + . . .  ) n  x t + (1xn~2 + 2n~3 + . . .  )n. (1.6) 

Also S may  be written as (x on S) 

= x t  + y (n  x t) + zn,  (I.7) X 

o r  

2 = Cxx 12 + CxyXy + r + . . .  (I.8) 

where c ~  = x~. 
Now let Xo = (Xo, Yo, Zo) r be on S, with Xo and Yo O(A):  

a l A l  =~ z0 = a3 A2. (1.9) 
Xo 

Y0 = a 2 A  ) 

We now project the line segment L of  C: 

r(u), u e [u* - a, u* + b](a, b = O(A)) 

on the plane 

n ' - x '  = 0, (I .10) 

where n' is the local normal  of  S at xo and x" = (x', y ' ,  z') is expressed in the local coordinate 
system at x0: ( t ' ,  n' x t ', n ' ) .  (See Fig. 1.3). Now 

a t 

n' • t' 

t' 

and 

t 

n x t  

n 

= (ntA + O(A2))t + (n2 A + O(A2))n x t + (1 - n3A + O(R))n,  

= (slA + O(A2)t + (1 - s2A + O(A2))n x t + (s3A + O(AZ))n, 

= (1 - t~A + O(A2))t + (t2A + O(A2))n x t + (t3A + O(A2))n 

= (1 - -  t l A  + O(A2))t ' + (slA + O(AE))n ' x t" + (n~A + O(A2))n ', 

= (t2A + O(A2))t ' + (1 - s2A + O(A2))n ' x t" + (n2A + O(A2))n ', 

= (t3A + O(A2))t ' + (s3A + O(A2))n ' x t '  + (1 - n3A + O(A2))n '. 

(I.11) 
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~.."C ~_n'._x'=O A' ~~ 

~ 0  

Fig. 1.3. P r o j e c t i o n  L '  o f  L o n  n '  �9 x '  = 0. 

In the new coordinate system L can be written as (from (I.6)) 

, 

o r  
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r + r -- t ,A + O(A2))t ' + (s,A + O(A2))n" x t' + (n ,a  + O(A2))n "] 

+ �89162 + O(A2))t" + (1 - s2A + O(A2))n" x t' + (n2A + O(A2))n '] 

+ lx .r  + O(N)) t '  + (ssA + O(A2))n ' x t' + (1 - nsA + O(AZ))n "] 

+ O(A3)(n ' • t') + O(A3)n ', (I.13) 

+ ( ~(1 -- tlA + O(A2)) + (�89 A + (�89 + O(A2r 2, A~ 3) \ 

) ~(s,a + O(a2)) + (�89 2 + 2g~s)(1 - s2A) + (�89 2 + X.r 

+ O(A2~ 2, A~ 3) 

\~(nlA + O(A2)) + (�89162 + (�89 + 2~3)(1 _ nsA) + O(A2~2, A~3) 

(1.14) 

and L' becomes (after translation) 

~ ,  = [r -- t~A + O(A2)) + �89 + �89 + O(A2~ 2, A~3)]t" 

+ [~(s,A + O(A2)) + �89 - SE A) + 2,~ 3 + �89162 

+ O(A2~ 2, A~3)]n ' x t' + On'. ( i . 1 5 )  
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